1、当光线撞击非线性材料时,它们的行为就像线性谐振子一样,只有当频率匹配它们的自己的内部自然谐振频率时才会振荡。
2、应用能量测不准量公式到介观系统,可得线性谐振子的能级宽度.
3、本文将复频率谐振子量子化,然后利用类比的方法,实现了二阶电路的量子化。
4、在量子力学中,对谐振子的研究zaojv.c om,无论在理论上还是在实践应用中都很重要。
5、在这种极限下证明出二维谐振子量子力学不描述单粒子而描述系综。
6、二维各向同性谐振子体系除哈密顿量外还有三个独立的守恒量。
7、这是谐振子哈密顿算符最有用的形式,在下文中还会碰到这个表达式。
8、利用压缩相干态的理论和有关性质,导出了压缩相干态下谐振子任意次幂的坐标算符矩阵元的表达式,并对所求的结果进行了讨论。
9、根据张量理论找到一个二阶对称张量T及相应的四极矩Q,然后引进一个包含轨道角动量在内的新的角动量,用它们表征谐振子的动力学对称性并求出谐振子的能级及其简并度。
10、利用相对论谐振子模型,计算了重子共振态的螺旋度振幅,并考察了相对论修正的影响。
